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In the last fifteen years many researchers have developed different algo-
rithms to simulate Langevin equations with a colored noise,"' for instance,
one-step collocation,12' predictor-corrector scheme,'3' genuine second-order
algorithm'4' and Runge-Kutta approach.(5) In these approaches an integral
simulation for an Ornstein-Uhlenbeck noise source is firstly performed and
then the deterministic portion of the equation is either expanded or
iterated, thus one produces the numerical algorithms. One of the most
debated problems within the community of stochastic physics has been the
calculation of the activation rate in overdamped systems in the presence of
the correlated fluctuations. It is the purpose of this paper to present and
discuss an integral algorithm for numerical integration of one-dimensional
Langevin equation driven by an additive colored noise. The algorithm is
stable upon changing the time steps. The simulations of both the bistable
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We present an integral-closed algorithm for solving a Langevin equation driven
by an additive colored noise. Both the mean first passage time in a bistable
system and the diffusion current in a titled periodic potential are calculated and
the comparison with existing algorithms is carried out. The dependence of the
numerical results on the time steps is studied. Our algorithm is shown to have
high accuracy and stability.
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potential and the titled ratchet-like periodic potential are tested to show
the improved accuracy over the standard methods.

We consider a Brownian particle moving in a one-dimensional non-
linear potential V(x), which is subject to an additive Ornstein-Uhlenbeck
noise. The motion of the particle is described by the following Langevin
equation:

where

We now develop an integral algorithm in a closed form in terms of the
analytical solution of linearized Eq. (1). The first step is to expand the term

f ( x ( t ) ) to the first order within the time interval 7«S / ' ^ t + At,
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where/(x) = — V(x), s(t) indicates the noise source, D and r are the inten-
sity and the correlation time of the noise. Here { • • •} refers to an average
over the initial value of e, i.e., the stationary distribution of e(0) is(6):
P(e(0)) = (2nD/T ) ~ l /2 expf -rs2(0) /2D) . This exponentially correlated
colored noise can be produced by a white noise r/(t) as

with

An integral algorithm has been derived*71 for the simulation of Eq. (3).
It reads
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thus Eq. (1) becomes

Integrate (8) with the initial condition x(/ ') | , . = ( = x( / ) and obtain

consequently,

in which <MI is defined by

where co0 and Wj are two Gaussian variables with zero —mean and their
standard deviations and cross correlation are given by
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and

Define R0 and Rl as two uncorrelated Gaussian random numbers with
mean zero and standard deviation one, thus we have for o>0 and a)l.

(3>4)

To demonstrate the superiority of the present method, let us now discuss
the algorithm in the limit |/'| At «min(dt/T, 1) and in the limit T -> 0.
First, consider in the first limiting case.

Using (10) we have

and

For <«f> and <co 0ff l i> we have



Thus the expression (21) agrees with Cecchi-Magnasco algorithm for the
white noise.'8'

We have performed tests of the algorithm presented here on two types
of problems concerned with improving existing algorithms. One of these is
a mean first-passage-time (MFPT) problem that is not analytically solv-
able but for which the reliable results have been obtained by use of the one-
step collocation algorithm, the stochastic Runge-Kutta algorithm and the
genuine second-order algorithm as well as the theoretical predictions.(9> 10)

The other one is the diffusion current of a particle in a tilted ratchet-like
potential which has been studied by the matrix-continued fraction (MCF)
method.(11) Both tests support the claim that the integral algorithm is
efficient and stable on the changing the time steps.

Recent studies on MFPT behavior in a double well (V(x) =
— \/2x2 + l/4x4) with the parameters D = 0.1 and r = 0.1, 1.0 have been
carried out by an improved algorithm'3' and a genuine second-order algo-
rithm,(4) respectively. Up to At = Q.\ the above two methods reproduced
the At = 0.001 value for MFPT quite well. In this paper, the numerical
calculations for MFPT are done starting from x = — 1 to reach the barrier
at x = 0 with average over 2000 stochastic realizations. The results are
shown in Fig. 1 and Table 1 by using the 3/2-order algorithm (ALGO 1),
the stochastic Runge-Kutta approach (ALGO 2), the genuine second-
order algorithm (ALGO 3) and our integral algorithm (ALGO 4) for the
different values of D and r. We choose r = 0.1 and £> = 0.3 in Fig. 1. In
Table 1 the white-noise limit r = 10~4 is taken, the theoretical value of
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and

We have exactly the second-order algorithm of Fox<4) and 3/2-order algo-
rithm of Mannella-Palleshchi.'3'

In the other limit r -»0, which corresponds to taking the limit of white
noise, our algorithm becomes
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MFPT is 30.86 for D = 0.1 as well as the one is 1.28 for Z)= 1.0. It is clear
from Fig. 1 and Table 1 that both our algorithm (ALGO 4), the genuine
second-order algorithm of Fox (ALGO 3) and the stochastic Runge-Kutta
approach (ALGO 2) have an overall better convergence when At is
decreased, also the limit t->0, Al finite can be safely taken. On the other
hand, however, as the noise intensity D increases, numerical overflow will

Fig. 1. Dependence of MFPT on time steps for r = 0.1 and /) = 0.3. Triangles, ALGO 1;
squares, ALGO 2; thin solid line with circles, ALGO 3; and thick solid line, ALGO 4.

Table 1. MFPT vs. Af in the White-Noise Limit"

0 = 0.1 D=1.0

ALGO 1 ALGO 2 ALGO 3 ALGO 4 ALOO 1 ALGO 2 ALGO 3 ALGO 4

z(/ = 0.1
zf/ = 0.05
/I; = 0.01
At = 0.001

37.4543
35.6602
33.3607
31.4781

37.1914
35.5612
33.3607
31.4781

42.6164
37.8906
33.9640
31.5900

31.2229
33.4442
32.7790
31.4306

overflow
1.6702
1.4417
1.3706

1.7167
1.5945
1.4401
1.3706

2.2113
1.7728
1.4731
1.3638

overflow
1.4189
1.4204
1.3690
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develop when At^Q.l with £>= 1.0 for ALGO 1 and ALGO 4, these can
be traced to the poor quality of the numerical integration for such large
time steps. The Runge-Kutta algorithm and the second-order algorithm
are also used to obtain a stable data, but the MFPT computed for At = 0.1
is about 20~30% larger than the MFPT computed for At = 0.001. We
solve this problem by interdicting a dimensionless restriction: D At < 10~'.

The second example, we consider the diffusion current of a particle in
a tilted ratchet-like potential1"1 ( V(x) = - (I/2jt)[sin(2nx) + 0.25 sin(4;rjc)]
— Q.5x, cf. Fig. 2) driven by a colored noise. The simulation is done with
2x l0 4 realizations to determine the average particle velocity <*(?)> =
</WO)> at the stationary states (here, f = 4.0) when starting from a mini-
mal state of the potential, the steady current is determined by J= <i( ?)>.„.
The dependence of the numerical results calculated by above four kinds of
algorithms on the time steps with the parameters D = 0.5 and r = 0.2 is
shown in Fig. 3, One can clearly see that the integral algorithm (ALGO 4)
is more stable than other three algorithms, and it seems to show a platform
for small-to-intermediate values of At. From Figs. 1 and 3 we have found

Fig. 2. The titled ratchet-like potential.
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Fig. 3. Dependence of the steady velocity on time steps for r = 0.2 and D = 0.5. Triangles,
ALGO I; squares, ALGO 2; thin solid line with circles. ALGO 3; and thick solid line, ALGO 4.

that the second-order algorithm'4 ' (ALGO 3) is always slightly better than
the 3/2-order algorithm (ALGO 1), and the results calculated by ALGO 3
and ALGO 4 are identical when the time steps become small, however the
stochastic Runge-Kutta algorithm (ALGO 2) has a little oscillation.

In summary, we have derived an integral-closed algorithm for solving
one-dimensional Langevin equation driven by an additive colored noise,
only two Gaussian random numbers are required within each integration
step as the same the genuine second-order algorithm.'4' The present algo-
rithm has the nice properties that it can be reduced to the integral algo-
rithm for the white noise and to the earlier colored noise algorithm for
small enough time step. Two numerical tests are performed by using the
various algorithms, and the dependence of numerical results on the time
steps is also studied. For the integral algorithm presented here, any correla-
tion time of colored noise and the more complex nonlinear potentials can
be considered, however, one should not blindly use too large a time step
when the noise intensity is increased.
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